Global Stability of Delayed Hopfield Neural Networks under Dynamical Thresholds
نویسنده
چکیده
We study dynamical behavior of a class of cellular neural networks system with distributed delays under dynamical thresholds. By using topological degree theory and Lyapunov functions, some new criteria ensuring the existence, uniqueness, global asymptotic stability, and global exponential stability of equilibrium point are derived. In particular, our criteria generalize and improve some known results in the literature.
منابع مشابه
Existence and Global Stability of Periodic Solution for Delayed Discrete High-order Hopfield-type Neural Networks
It is well known that studies on neural dynamical systems not only involve discussion of stability property, but also involve other dynamics behaviors such as periodic oscillatory, bifurcation and chaos. In many applications, the property of periodic oscillatory solutions are of great interest. For example, the human brain has been in periodic oscillatory or chaos state, hence it is of prime im...
متن کاملGlobal Exponential Stability Analysis of a Class of Dynamical Neural Networks
⎯The problem of the global exponential stability of a class of Hopfield neural networks is considered. Based on nonnegative matrix theory, a sufficient condition for the existence, uniqueness and global exponential stability of the equilibrium point is presented. And the upper bound for the degree of exponential stability is given. Moreover, a simulation is given to show the effectiveness of th...
متن کاملA new sufficient conditions of stability for discrete time non-autonomous delayed Hopfield neural networks
In this paper, we consider the uniform asymptotic stability, global asymptotic stability and global exponential stability of the equilibrium point of discrete Hopfield neural networks with delays. Some new stability criteria for system are derived by using the Lyapunov functional method and the linear matrix inequality approach, for estimating the upper bound of Lyapunov functional derivative. ...
متن کاملNew Delay-dependent Global Asymptotic Stability Condition for Hopfield Neural Networks with Time-varying Delays
This paper deals with the global asymptotic stability problem for Hopfield neural networks with time-varying delays. By resorting to the integral inequality and constructing a Lyapunov-Krasovskii functional, a novel delay-dependent condition is established to guarantee the existence and global asymptotic stability of the unique equilibrium point for a given delayed Hopfield neural network. This...
متن کاملDynamical Nonlinear Neural Networks with Perturbations Modeling and Global Robust Stability Analysis
This paper is devoted to studying both the global and local stability of dynamical neural networks. In particular, it has focused on nonlinear neural networks with perturbation. Properties relating to asymptotic and exponential stability and instability have been detailed. This paper also looks at the robustness of neural networks to perturbations and examines if the related properties have bee...
متن کامل